Pipeline and Hazardous Materials Safety Admin., DOT

§ 173.435

Where:

 ${\bf n}$ + ${\bf m}$ represents all the radionuclides in the mixture;

m are the radionuclides that do not need to be considered;

 $\boldsymbol{a}_{(i)}$ is the activity of radionuclide i in the mixture; and

 $A_{(i)}$ is the A_1 or A_2 value, as appropriate for radionuclide i.

(h) Tables 7 and 8 are as follows:

Table 7—General Values for $\mbox{\bf A}_1$ and $\mbox{\bf A}_2$

Radioactive contents	A	\ ₁	A ₂		
nauloactive contents	(TBq)	(Ci)	(TBq)	(Ci)	
Only beta or gamma emitting nuclides are known to be present Only alpha emitting nuclides are known to be present No relevant data are available	1×10^{-1} 2×10^{-1} 1×10^{-3}	$\begin{array}{c} 2.7\times10^{0}\\ 5.4\times10^{0}\\ 2.7\times10^{-2} \end{array}$	2 × 10 ⁻² 9 × 10 ⁻⁵ 9 × 10 ⁻⁵	5.4×10^{-1} 2.4×10^{-3} 2.4×10^{-3}	

TABLE 8—GENERAL EXEMPTION VALUES

Radioactive contents	Activity concer empt n	ntration for ex- naterial	Activity limits for exempt consignments		
	(Bq/g)	(Ci/g)	(Bq)	Ci)	
Only beta or gamma emitting nuclides are known to be present Only alpha emitting nuclides are known to be present No relevant data are available	1×10^{1} 1×10^{-1} 1×10^{-1}	2.7×10^{-10} 2.7×10^{-12} 2.7×10^{-12}	1 × 10 ⁴ 1 × 10 ³ 1 × 10 ³	2.7×10^{-7} 2.7×10^{-8} 2.7×10^{-8}	

[69 FR 3677, Jan. 26, 2004; 69 FR 55119, Sept. 13, 2004]

$\S\,173.434$ Activity-mass relationships for uranium and natural thorium.

The table of activity-mass relationships for uranium and natural thorium are as follows:

The situation and the second (AMO) (225 Harmone)	Specific activity				
Thorium and uranium enrichment 1 (Wt% ²³⁵ U present)	TBq/gram	Grams/Tbq	Ci/gram	Grams/Ci	
0.45 (depleted)	1.9×10 ⁻⁸	5.4×10 ⁷	5.0×10 ⁻⁷	2.0×10 ⁶	
0.72 (natural)	2.6×10 ⁻⁸	3.8×10 ⁷	7.1×10 ⁻⁷	1.4×10 ⁶	
1.0	2.8×10 ⁻⁸	3.6×10 ⁷	7.6×10 ⁻⁷	1.3×106	
1.5	3.7×10 ⁻⁸	2.7×10 ⁷	1.0×10 ⁻⁶	1.0×10 ⁶	
5.0	1.0×10 ⁻⁷	1.0×10 ⁷	2.7×10 ⁻⁶	3.7×10 ⁵	
10.0	1.8×10-7	5.6×10 ⁶	4.8×10-6	2.1×10 ⁵	
20.0	3.7×10-7	2.7×10 ⁶	1.0×10-5	1.0×10 ⁵	
35.0	7.4×10 ⁻⁷	1.4×10 ⁶	2.0×10 ⁻⁵	5.0×10 ⁴	
50.0	9.3×10 ⁻⁷	1.1×10 ⁶	2.5×10-5	4.0×10 ⁴	
90.0	2.1×10-6	4.7×10 ⁵	5.8×10 ⁻⁵	1.7×10 ⁴	
93.0	2.6×10-6	3.9×10 ⁵	7.0×10 ⁻⁵	1.4×10 ⁴	
95.0	3.4×10 ⁻⁶	3.0×10 ⁵	9.1×10 ⁻⁵	1.1×10 ⁴	
Natural thorium	8.1×10 ⁻⁹	1.2×10 ⁸	2.2×10 ⁻⁷	4.6×10 ⁶	

¹The figures for uranium include representative values for the activity of uranium-234 which is concentrated during the enrichment process. The activity for thorium includes the equilibrium concentration of thorium-228.

[Amdt. 173-244, 60 FR 50307, Sept. 28, 1995, as amended by 63 FR 52849, Oct. 1, 1998]

$\$\,173.435$ $\;$ Table of A_1 and A_2 values for radionuclides.

The table of A_1 and A_2 values for radionuclides is as follows:

Symbol of radionuclide	Element and atomic number	A ₁ (TBq)	A ₁ (Ci) b	A ₂ (TBq)	A ₂ (Ci) b	Specific activity	
						(TBq/g)	(Ci/g)
Ac-225 (a) Ac-227 (a)	Actinium (89)	8.0×10 ⁻¹ 9.0×10 ⁻¹	2.2×10 ¹ 2.4×10 ¹	6.0×10 ⁻³ 9.0×10 ⁻⁵	1.6×10 ⁻¹ 2.4×10 ⁻³	2.1×10 ³ 2.7	5.8×10 ⁴ 7.2×10 ¹
Ac-228		6.0×10 ⁻¹	1.6×10 ¹	5.0×10 ⁻¹	1.4×10 ¹	8.4×10 ⁴	2.2×10 ⁶
Ag-105	Silver (47)	2.0	5.4×10 ¹	2.0	5.4×10 ¹	1.1×10 ³	3.0×10 ⁴
Ag-108m (a)		7.0×10 ⁻¹	1.9×10 ¹	7.0×10 ⁻¹	1.9×10 ¹	9.7×10 ⁻¹	2.6×10 ¹
Ag-110m (a)		4.0×10 ⁻¹	1.1×10 ¹	4.0×10 ⁻¹	1.1×10 ¹	1.8×10 ²	4.7×10 ³
Ag-111		2.0	5.4×10 ¹	6.0×10 ⁻¹	1.6×10 ¹	5.8×10 ³	1.6×10 ⁵
Al-26	Aluminum (13)	1 0×10-1	27	1 0×10-1	27	7 0×10 -4	1 9×10-2